floor/
-- r7rs
Definition procedure
;
Procedure variants:
((real-not-nan real-not-zero-not-nan) -> (real-not-nan real-not-nan))
real-not-nan
;real-not-zero-not-nan
;real-not-nan
;real-not-nan
;((real real-not-zero) -> (real-nan real-nan))
real
;real-not-zero
;scheme:base
-- (scheme base)
;scheme
-- (scheme)
;(floor/ n_1 n_2) (floor-quotient n_1 n_2) (floor-remainder n_1 n_2) (truncate/ n_1 n_2) (truncate-quotient n_1 n_2) (truncate-remainder n_1 n_2)
These procedures implement number-theoretic (integer) division. It is an error if
n_2
is zero. The procedures ending in/
return two integers; the other procedures return an integer. All the procedures compute a quotientn_q
and remaindern_r
such thatn_1 = n_2 n_q + n_r
. For each of the division operators, there are three procedures defined as follows:(<operator>/ n_1 n_2) ===> n_q n_r (<operator>-quotient n_1 n_2) ===> n_q (<operator>-remainder n_1 n_2) ===> n_r
The remainder
n_r
is determined by the choice of integern_q
:n_r = n_1 - n_2 n_q
. Each set of operators uses a different choice ofn_q
:
floor
--n_q = floor(n_1 / n_2)
;truncate
--n_q = truncate(n_1 / n_2)
;For any of the operators, and for integers
n_1
andn_2
withn_2
not equal to 0,(= n_1 (+ (* n_2 (<operator>-quotient n_1 n_2)) (<operator>-remainder n_1 n_2))) ===> #t
provided all numbers involved in that computation are exact.
Examples:
(floor/ 5 2) ===> 2 1 (floor/ -5 2) ===> -3 1 (floor/ 5 -2) ===> -3 -1 (floor/ -5 -2) ===> 2 -1 (truncate/ 5 2) ===> 2 1 (truncate/ -5 2) ===> -2 -1 (truncate/ 5 -2) ===> -2 1 (truncate/ -5 -2) ===> 2 -1 (truncate/ -5.0 -2) ===> 2.0 -1.0
(quotient n_1 n_2) (remainder n_1 n_2) (modulo n_1 n_2)
The
quotient
andremainder
procedures are equivalent totruncate-quotient
andtruncate-remainder
, respectively, andmodulo
is equivalent tofloor-remainder
.Note: These procedures are provided for backward compatibility with earlier versions of this report.
The text herein was sourced and adapted as described in the "R7RS attribution of various text snippets" appendix.